The relatively short time given in the current study

to t

The relatively short time given in the current study

to the green cane management was likely insufficient to positively affect the C content in the soil. Possibly, during the transition to this system, more labile organic matter was incorporated than that incorporated in the form of burnt compounds, resulting in higher soil respiration rates, which may have reduced C contents in this treatment. Moreover, the maintenance of crop residues may have created better conditions for microbial activity, resulting in an increased cycling of soil organic matter. This hypothesis is supported by the higher values of δ13C and δ15N found in the respective soil (Table 1). The Pitavastatin clinical trial soil δ13C detected in all treatments was between Ruboxistaurin in vivo −20‰ and −23‰, suggesting that the soil OM is a combination of the OM from previous cultivation (C3 plants) and also from the current sugarcane cultivation (C4 plants). However, the more enriched signal found in green cane indicates that the detected C derives primarily from the C4 route. Moreover, the higher δ15N also indicates a more intense N cycling. The C contents of the soil under the

two regimes were on the order of those found in other sugarcane plantings [3]. However, studies in the same soil under natural vegetation or agricultural use previously reported higher organic C contents [46, 47]. Further studies should attempt to assess the extent to which land use affects soil C stocks. Ammonium was the predominant form of mineral N in the control soil, whereas the two soils under sugarcane showed a predominance of nitrate (Table 2). Such changes of the predominant Alanine-glyoxylate transaminase soil N form promoted by land use change have been reported earlier [10]. With respect to the N cycle, the net rates

of N selleck compound Mineralization and nitrification were significantly lower in the two soils under sugarcane cultivation, when compared with the control (Table 2). Such effects of the use of soil have been observed before [10, 48, 49]. However, the changes in sugarcane harvest management did not result in an alteration of the patterns of N transformations, agreeing with previous published results [50]. Table 2 Contents of NH 4 + -N, NO 3 – -N, net rates of N mineralization and nitrification in the soil and denitrifier enzyme activity (DEA) of the soil (0–10 cm) Treatment NH4 +-N NO3 –N Mineralization Nitrification DEA   mg kg-1dried soil mg kg-1dried soil day-1   Control 9.6 (1.5)a 1.3 (0.5)b 2.6 (0.5)a 2.6 (0.4)a 2.6 (0.3)a Green cane 13.5 (12.1)ab 32.6 (27.9)a −4.2 (6.0)b −2.5 (3.9)b 0.1 (0.0)b Burnt cane 1.9 (0.9) b 26.6 (15.9)a −0.5 (0.8)b 0.4 (0.8)b 0.1 (0.0)b The numbers represent average values (n = 3 for DEA and n = 5 for the rest) followed by their respective standard deviations in parentheses.

Accession numbers (Acc n°) and identities are given Specificity

Accession numbers (Acc. n°) and identities are given. Specificity of designed oligonucleotides The specificity of the 95 designed oligonucleotides (Additional file 3) was evaluated using PCR amplicons that were generated from sporocarp click here tissues. PCR amplicons mainly hybridised to the phylochip

oligonucleotides according to the expected patterns (Figure 1), and the patterns were highly reproducible in the replications conducted with each of the templates. The hybridisation signal intensities ranged from -22 (background value) to 44,835 units. Ninety-nine percent of the oligonucleotides tested generated positive hybridisation signals with their matching ITS. Cross-hybridisations

check details were mainly observed within the Cortinarius and Lactarius species complex. Among the Boletaceae species, a few cross-hybridisations were observed selleck inhibitor between the species that belonged to the Boletus and Xerocomus genera. Within the Amanita, Russula or Tricholoma genus, rare cross-reactions occurred between single sequences from closely related species. Figure 1 Hybridisation reactions of the species-specific fungal oligonucleotides. Reactions were tested by hybridising known fungal ITS pools to the phylochip. Vertical line indicates the fungal species used in the fungal ITS pools (hybridised probes), and the horizontal lines list the species-specific oligonucleotides. Grey boxes denote the positive hybridisation signals of an oligonucleotide obtained after threshold subtraction. The accompanying AZD9291 in vivo tree showing the phylogenetic relationship between tested fungal species was produced by the MEGAN programme.

The size of the circle beside the genus name indicates the number of species of this genus used in the cross-hybridisation test. Identification of ECM species in root samples using phylochip The ITS amplicons that were obtained from the two different environmental root samples were labelled and hybridised to the phylochips. The phylochip analysis confirmed the presence of most of the ECM fungi that were detected with the morphotyping, with the ITS sequencing of individual ECM tips, and with the ITS clone library approaches that were obtained using the same PCR products (Table 2). The exceptions included the following fungal species for which corresponding oligonucleotides on the phylochips were lacking: Pezizales sp, Atheliaceae (Piloderma) sp, Sebacina sp, Sebacinaceae sp, and unknown endophytic species.

RNA was converted to cDNA with Reverse Transcription System (Prom

RNA was converted to cDNA with Reverse Transcription System (Promega) according

to the manufacturer’s instructions. Q-PCR was performed using the miRNA SYBR Real-time PCR kit (Guangzhou RiboBio, Guangzhou, Guangdong, China) on the ABI 7300 Real-Time PCR system (Life Technologies, Grand Island, NY). To calculate relative expression, the (ΔΔCT) method was used in comparing miRNA expression in U251R cells to U251 parental cancer cells according to ABI’s protocol. Annexin V-FITC apoptosis detection This assay was performed according to the manufacturer’s instructions (Beyotime Institute of Biotechnology, Shanghai, China). Briefly, after treatment, cells were collected, washed selleck products with PBS and pelleted. Cell pellets were resuspended in 100 μL of Annexin V-FITC labeling solution and incubated at room temperature in dark for 30 minutes. After incubation, reaction was stopped by adding 300 μL ice-cold PBS and measured on FACSCalibur flow cytometer (Becton Dickinson, Franklin Lakes, NJ). Caspase-3 NVP-BEZ235 activity analysis Caspase-3 activity was measured by Caspase-Glo3/7 assay kit (Promega) according to the

manufacturer’s instructions. Cell cycle analysis This assay was performed as previously described [28]. Briefly, cells were harvested, washed twice with cold PBS and fixed with 70% this website cold ethanol overnight. Fixative was discarded and 0.2% Triton X-100 was added to the fixed cells. Cells were washed with PBS again and resuspended in PBS containing 50 mg/mL PI and 1 mg/mL RNase A for 30 min in the dark on ice. The samples were then analyzed on a flow cytometer. Statistics The Student′s t-test was used to compare the difference

between two tested groups. A value of p < 0.05 was considered as indicating a significant difference. Results Characterization of the induced cisplatin-resistant U251 cells 5-Fluoracil nmr We observed no apparent difference in morphology or growth rate between the parental U251 cells and cisplatin-resistant U251 cells (hereafter refers as U251R). To compare the sensitivity of the parental U251 and U251R cells to cisplatin, cells were treated with different concentrations of cisplatin for 72 hours and dose–response curves were plotted as shown in Figure 1A. Dose-dependent anti-proliferative activity were observed in both cell lines; however, the resistance of U251R to cisplatin was 3.1 fold higher than that of the parental U251 cells, as measured by the IC50 values for cisplatin over 48 hours treatment: 1.4±0.1 μg/mL and 4.4±0.9 μg/mL, respectively (Figure 1B). Figure 1 Characterization of the induced cisplatin-resistant U251 cells. (A) U251 and U251R cells were treated with indicated concentration of cisplatin for 72 hours and cell viability was tested by MTT. (B) IC50 of cisplatin in U251 and U251R cells was calculated.

The SCCmec carries the mecA gene, which encodes penicillin bindin

The SCCmec carries the mecA gene, which encodes penicillin binding protein PBP2a, the main causal factor of methicillin resistance. Different types of SCCmec cassettes and their variants have been identified [10, 11]. The current methods for MRSA detection are based on either the phenotypic expression such as oxacillin resistance, or genotypic characterization. For this study, we used modified broad-range PCR primers that originate from the conserved regions of genes that encode the topoisomerases together with specific oligonucleotide probes located at hyper-variable regions flanked by the primers. Using these primers and probes, single or even multiple infection-causing bacteria could be simultaneously

learn more detected and identified. The bacterial pathogen panel of the assay covered the following species: selleck chemicals Acinetobacter baumannii, Enterococcus faecalis, Enterococcus faecium, Haemophilus influenzae, Klebsiella pneumoniae, check details Listeria monocytogenes, Neisseria meningitidis, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus agalactiae, Streptococcus pneumoniae, Streptococcus pyogenes and selected CNS species. These bacteria are examples of highly virulent, potentially multi-antimicrobial resistant or the most common etiologic agents associated with various life-threatening conditions. Such

conditions include: sepsis, infective endocarditis and central nervous system infection. All these conditions necessitate rapid and accurate diagnostics to improve the chances of a positive outcome for

the patient. We used the ArrayTube™ as a microarray platform for the probes. The ArrayTube™ has been demonstrated to detect and Immune system identify bacterial pathogens with a high degree of sensitivity [12–14], differentiate between various pathotypes of the same bacterial species [15] and to be capable of detecting antimicrobial resistance genes [16] from an isolated DNA sample. Furthermore, by including specific primers and probes for the mecA methicillin resistance gene in the same assay, we were able to associate the mecA gene with a particular Staphylococcus species present in the sample. The combination of broad-range PCR and array-based methods provided a sensitive and specific approach for detecting and identifying bacterial pathogens along with finding possible resistance markers. Results Assay design First, we re-designed and modified the bacterial broad-range gyrB/parE primers [4] by using inosines to reduce the level of degeneration. These modifications also facilitated the use of a novel PCR method for the assay (PCR program described in Materials and Methods). The PCR method had two distinct phases: a three-step PCR phase that exponentially produced dsDNA, followed by a two-step PCR phase that took place under two different conditions and which produced ssDNA in a linear manner. The method is based on partly overlapping annealing temperatures of the forward and reverse primers.

Such fabrication could attain the practical mass production of a

Such fabrication could attain the practical mass production of a device. Moreover, to form functional heterostructure microelectronic devices, sapphire substrates can be used to integrate LSMO nanofilms with other high-quality optoelectronic thin films [11, 12]. During this project, two different crystallographic textured LSMO thin films with a nanoscale thickness were grown using In2O3 epitaxial underlayering. These films did not suffer lattice

stress. These results enable an analysis of the correlation between nanoscale crystal imperfections and manganite nanofilm physical properties. Methods LSMO nanolayers www.selleckchem.com/products/CP-673451.html (the Sr content is approximately 39%) with thickness of approximately 60 nm were grown on the c-axis-oriented sapphire substrates with and without 40-nm-thick In2O3 (222) epitaxial buffering. The deposition of the In2O3 epitaxy layers and LSMO nanolayers was performed using a radiofrequency magnetron-sputtering system. During the deposition, the substrate temperature for the thin-film growth of the In2O3 epitaxy and LSMO nanolayer was kept at 600°C and 750°C, respectively. Moreover, the gas pressure of deposition was fixed at 10 mTorr with an Ar/O2 ratio of 3:1. The as-synthesized samples are learn more further annealed in air ambient at 950°C for 30 min. The crystal structure of the samples was investigated by X-ray diffraction (XRD) with Cu Kα radiation. The detailed microstructure of the as-synthesized samples was characterized

AZD2281 concentration by scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). The composition analysis was performed using energy dispersive X-ray spectrometer (EDS) attached to the TEM. The surface morphology of the LSMO nanolayers was investigated by atomic force microscopy (AFM) with an area size of 2 μm × 2 μm. The surface current images of the LSMO nanolayers were also observed

using conductive atomic force microscopy (CAFM) with PtIr tips. A superconducting quantum interference device magnetometer was used to measure the magnetic properties of the samples. Results and discussion Figure 1a,b shows the XRD patterns of the LSMO nanolayers grown on sapphire substrates with and without In2O3 epitaxial MG-132 solubility dmso buffering, respectively. In addition to Bragg reflection from the In2O3 (222) and Al2O3 (0001) crystallographic planes, clear Bragg reflections of (100), (110), and (200) were present for the pseudo-cubic LSMO in the XRD measurement range. The XRD results show a highly (110)-oriented crystallographic feature of the LSMO nanolayer grown on the In2O3 (222) epitaxy. By contrast, a highly (h00)-oriented crystallographic feature was observed for the LSMO nanolayer grown on the bare sapphire substrate. The LSMO nanolayers with and without In2O3 epitaxial buffering are in a pseudocubic structure with a similar lattice constant of 0.387 nm. This is similar to the bulk value [4], demonstrating that no lattice distortion exists in the nanofilms.

It should be noted that most of the wounds we have evaluated in t

It should be noted that most of the wounds we have evaluated in the past have relatively high overall numbers of bacteria (>105 per mg debridement, based upon quantitative molecular methods) so even relatively low percentages of individual species such as 2% Anaerococcus spp. may potentially represents a large number of individual bacteria propagating within wound biofilms. Conclusion Dowd et al [15] first used pyrosequencing to survey pooled samples of VLU, diabetic foot ulcers and decubitous ulcers and later did a more comprehensive survey of diabetic foot ulcers [9]. This study takes a similar

but more comprehensive approach with VLU in order to better elucidate the individual ecologies in a large population of such chronic wounds. Here we show that individual wounds MLN4924 have distinct ecological footprints. We also show that within individual wounds there can be both significant site specific differences and relative uniformity in the bacterial ecology. The bottom line appears to be that each wound must be carefully evaluated and that no single pathogen is likely to be the causative agent of such infections. The wound care scientific and clinical opinion leaders have come to accepted the abundance of data showing that these polymicrobial biofilms represent

a primary impediment to wound Selleckchem MAPK inhibitor GS1101 healing [9, 14, 20–22, 22–25, 25–30]. Based upon the current Reverse transcriptase work and previous efforts we can deduce that the unique profiles of each individual wound indicate that a personalized approach to therapeutics combined with the multiple concurrent strategies of biofilm-based wound care [26] will revolutionize wound care. As Tom Pollard indicated in a commentary recently, biofilm-based wound care is “” a significant shift in our whole approach

to wound healing.”" [31]. Biofilm-based wound care combined with individualized therapeutic approaches and accurate rapid molecular diagnostics provides renewed found hope for those suffering with chronic wounds. Methods General sample collection methods Patients were identified with VLU that have been persistent for over 6 months. These patients were enrolled in the study protocol after being educated and signing the informed consent protocol in compliance with Western Institutional Review Board approved protocols 56-RW-004 WIRB® Protocol #20062347. Necessary details of the study including the protocols, guidelines and requirements were thoroughly explained to all the patients. Following these explanations, written consents was obtained in the presence of a third party witness. A copy of the consent form has been provided to journal editors. The patients were well informed that they have the right to opt out of the study at any time in spite of their written consent. VLU wound beds were debrided to remove superficial debris and cleansed with sterile saline.

In the Methods, we describe the comprehensive protocol used to ob

In the Methods, we describe the comprehensive protocol used to obtain the soluble protein extracts. Briefly, to improve cell disruption and minimize proteolysis, lyophilized yeast cells were vortexed directly with glass beads. Lysis buffer and protease inhibitors were then added to reduce proteolytic enzyme activity. The pellet was disrupted MEK162 five times in a RiboLyzer, followed by phenol extraction and methanol precipitation. Finally, the protein spots were stained with Coomassie and identified by MALDI-TOF MS. To obtain the protein profiles of X. dendrorhous, the yeast was cultured in MM-glucose and harvested at the lag, late exponential and stationary growth phases.

Four independent cultures showed continuous increases in cell density until 70 h, which was immediately prior to the induction of carotenoid biosynthesis (Figure 1). As we have previously reported, pigment accumulation in MM-glucose was evident Selleck VS-4718 during the stationary phase [22, 23]. Carotenoid analysis by HPLC showed that astaxanthin was the main

carotenoid (75-90% of the total carotenoids) produced by the yeast during growth. Figure 1 Growth and pigment production in X. dendrorhous. Growth was measured by the absorbance at 560 nm (shown CP673451 clinical trial on a log scale), which is represented by the squares and solid line. The means ± SD of the values obtained from four independent cultures are shown. The vertical arrows indicate the harvest times for the assays (24, 70 and 96 h, which corresponded

to lag, late Loperamide exponential and stationary growth phases, respectively). The solid line represents the total carotenoids. The asterisk indicates the induction of carotenoid biosynthesis. For the proteomic analyses, triplicate protein extracts (prepared from three independent cultures) were subjected to 2D analysis, and their protein profiles were obtained. The different protein profiles were subjected to a stringent comparative analysis using PDQuest software (version 7.1.1, Bio-Rad). After automated spot detection, spots were checked manually to eliminate possible artifacts such as background noise or streaks. Student’s t-test (p < 0.05) was used to determine whether the relative changes in protein abundance were statistically significant. A representative 2D image is shown in Figure 2. The protein data analyses showed a consistent protein profile during growth (See additional file 1, Fig. S1). On average, approximately 600 spots were detected on each 2D gel in a pI-range of 3-10 and a molecular mass range of 10-100 kDa. This pattern of proteins was highly reproducible, and similar results were obtained in the triplicate cell extracts. Overall, the protein profiles did not change dramatically (over 90% of the spots were identical) during growth. Of the spots detected in all gels, 450 spots with different intensities were selected to be excised, digested with trypsin and analyzed by MALDI-TOF MS for protein identification.

These 182 patients grew an average of 4 4 types of microbes from

These 182 patients grew an average of 4.4 types of microbes from original wound cultures, although a single pathogen was responsible in 28 patients. Eighty five patients had combined aerobic and anaerobic growth, the most common organisms being, Bacteroides Etomoxir chemical structure species, aerobic streptococci, staphylococci, enterococci, Escherihia coli, and other gram-negative rods. Clostridial growth was common but did

not affect mortality unless associated with pure clostridial myonecrosis. Mortality was affected by the presence of bacteriemia, delayed or inadequate surgery, and degree of MODS on admission. Monomicrobial cases are usually caused by Group A Streptococcus pyogenes and Staphylococcus aureus. They occur in otherwise healthy, young, immunocompetent patients and are most usually located on the

extremities. In the study by Anderson et al. [22] more that 71% of cases had a polymicrobial source of infection. A polymicrobial infection is often diagnosed in immunocompromised patients and usually occurs in the perineum and trunk area [23]. Toxic shock syndrome is the most often accompanying syndrome of Streptococcal sepsis [24]. Batimastat concentration clinical findings The most representative clinical picture present with abscesses, infected traumatic EPZ015666 datasheet and surgical wounds, intravenous drug abuse, pressure sores burns, perforated viscera (particular colon, rectum, and anus), recently performed liposuction, infected vascular prostheses and grafts, and invasive cancer [18, 19]. Early clinical suspicion and surgery are the keys to improving survival, and patients with necrotizing infections need an integrated multidisciplinary approach Carnitine palmitoyltransferase II to management. It is adjusting with the infecting organism(s), the site of infection, and the effects from any toxins produced, and incorporate various clinical and laboratory parameters In everyday clinical practice a universal clinical guideline that should be used in the diagnosis and treatment of all types of NSTI/NF does not exist (Table 2, 4, 5). Table 5 Treatment options classified by type of infection and clinical picture Type of NSTI Depth of involvement Usual pathogens Predisposing factors Time of incubation

and rate of progression The main clinical signs Treatment options Polymicrobial NF-type I fascia and muscle obligate and facultative anaerobes different type of wounds long (48-96 h) Hour to days foul- smelling drainage ICU stay critical care therapy surgery antibiotics ev. HBO Monomicrobial NF-type II (Steptococcal gangrene) skin, fascia and muscle Streptococci -groups A, C, G, and B; (B is more common) excoriation or cut wound short (6-48 h) A few hour distinct margins ICU stay critical care therapy surgery antibiotics ev. HBO Gas gangrene (Clostridial myonecrosis) muscle C. perfirngens (C. perfirngens more common) and C. novyi tidy wounds short (6-48 h) A few hour extreme system toxicity ICU stay critical care therapy surgery antibiotics HBO     C.

Infect Disord Drug Targets 2007, 7:230–237 PubMedCrossRef 7 Chat

Infect Disord Drug Targets 2007, 7:230–237.PubMedCrossRef 7. Chatterjee D, Khoo KH: The surface Selleck MCC950 glycopeptidolipids of mycobacteria: structures and biological properties. Cell Mol Life Sci 2001, 58:2018–2042.PubMedCrossRef 8. Schorey JS,

Sweet L: The mycobacterial glycopeptidolipids: structure, function, and their role in pathogenesis. Glycobiology 2008, 18:832–841.PubMedCrossRef 9. Field SK, Fisher D, Cowie RL: Mycobacterium avium complex pulmonary disease in patients without HIV infection. Chest 2004, 126:566–581.PubMedCrossRef 10. Marras TK, Daley CL: Epidemiology of human pulmonary infection with nontuberculous mycobacteria. Clin Chest Med 2002, 23:553–567.PubMedCrossRef 11. Rhoades ER, Archambault AS, Greendyke R, Hsu FF, Streeter C, Byrd TF: Mycobacterium click here abscessus Glycopeptidolipids mask underlying cell wall phosphatidyl-myo-inositol mannosides blocking induction of human macrophage TNF-alpha by preventing interaction with TLR2. J Immunol 2009, 183:1997–2007.PubMedCrossRef 12. Shimada K, Takimoto H, Yano I, Kumazawa Y: Involvement of mannose receptor in glycopeptidolipid-mediated inhibition of phagosome-lysosome fusion. Microbiol Immunol 2006, 50:243–251.PubMed 13. Kano H, Doi T, Fujita Y, Takimoto H, Yano I, Kumazawa Y: Serotype-specific selleck products modulation of human monocyte functions by glycopeptidolipid

(GPL) isolated from Mycobacterium avium complex. Biol Pharm check Bull 2005, 28:335–339.PubMedCrossRef 14. Villeneuve C, Etienne G, Abadie V, Montrozier H, Bordier C, Laval F, Daffe M, Maridonneau-Parini I, Astarie-Dequeker C: Surface-exposed glycopeptidolipids of Mycobacterium smegmatis specifically inhibit the phagocytosis of mycobacteria by human macrophages. Identification of a novel family of glycopeptidolipids. J Biol Chem 2003, 278:51291–51300.PubMedCrossRef 15. Villeneuve C, Gilleron M, Maridonneau-Parini I, Daffe M, Astarie-Dequeker C, Etienne G: Mycobacteria use their

surface-exposed glycolipids to infect human macrophages through a receptor-dependent process. J Lipid Res 2005, 46:475–483.PubMedCrossRef 16. Barrow WW, Davis TL, Wright EL, Labrousse V, Bachelet M, Rastogi N: Immunomodulatory spectrum of lipids associated with Mycobacterium avium serovar 8. Infect Immun 1995, 63:126–133.PubMed 17. Sweet L, Singh PP, Azad AK, Rajaram MV, Schlesinger LS, Schorey JS: Mannose receptor-dependent delay in phagosome maturation by Mycobacterium avium glycopeptidolipids. Infect Immun 2010, 78:518–526.PubMedCrossRef 18. Recht J, Martinez A, Torello S, Kolter R: Genetic analysis of sliding motility in Mycobacterium smegmatis. J Bacteriol 2000, 182:4348–4351.PubMedCrossRef 19. Etienne G, Villeneuve C, Billman-Jacobe H, Astarie-Dequeker C, Dupont MA, Daffe M: The impact of the absence of glycopeptidolipids on the ultrastructure, cell surface and cell wall properties, and phagocytosis of Mycobacterium smegmatis. Microbiology 2002, 148:3089–3100.PubMed 20.

These results indicate that parthenolide induced amastigote cell

These results indicate that parthenolide induced amastigote cell death by autophagy, but other mechanisms of cell death cannot be dismissed, such as apoptosis and necrosis. Considering the limited repertoire of existing antileishmanial compounds, continuously developing new leishmanicidal compounds is essential. In the ongoing search for the best antileishmanial compounds, products derived from plants are gaining ground. The isolation and purification of the active components of medicinal

plants has been one the greatest advances. Additionally, delineation of the biochemical mechanisms involved in mediating effect of these compounds would help develop new chemotherapeutic approaches. Methods #Adriamycin clinical trial randurls[1|1|,|CHEM1|]# Drugs find more Parthenolide (minimum 90%) was purchased from Sigma-Aldrich (Steinheim, Germany). Amphotericin B (Cristália, Produtos Químicos Farmacêuticos Ltda, Itapira, SP, Brazil) was used as a positive control. In all of the tests, 0.05% dimethyl sulfoxide (DMSO; Sigma, St. Louis, MO, USA) was used to dissolve the highest dose of the compounds and had no effect on the parasites’ proliferation or morphology.

Axenic amastigotes Promastigotes of the Leishmania species differentiate to amastigotes with the combination of low pH and high temperature [46]. The WHOM/BR/75/Josefa strain of Leishmania amazonensis, isolated by C.A. Cuba-Cuba (University of Brasília, Brasília, Distrito Federal, Brazil) from a human case of diffuse cutaneous leishmaniasis, was used in the present study. Axenic amastigote cultures were obtained by the in vitro differentiation of promastigotes from the stationary phase in 25 cm2 tissue culture flasks by progressive temperature increase and pH decrease [47]. The cultures were maintained at 32°C in Schneider’s insect medium (Sigma, St. Louis, MO, USA), pH 4.6,

with 20% fetal bovine serum through weekly serial sub-culturing for further studies. Antiproliferative effect For the parasite growth inhibition assays, L. amazonensis axenic amastigotes were harvested during the exponential phase of growth, and 106 cells were added to each well of a 24-well plate and treated with different concentrations of parthenolide Tolmetin and amphotericin B. Medium alone and 0.05% DMSO were used as negative controls. For each treatment, the parasites were observed and counted daily using a Neubauer chamber with an optical microscope. Each experiment was performed in duplicate and twice on different occasions. The antiproliferative effect (percentage of growth inhibition) was evaluated with 5 day treatment, and the data are expressed as the mean ± standard error of the mean (Microsoft Excel). The corresponding 50% and 90% inhibitory concentrations (IC50 and IC90) were determined from the concentration-response curves (Excel software).