Substantial differences in the analyte profiles were notable, wit

Substantial differences in the analyte profiles were notable, with the group demonstrating the highest level of periodontitis showing elevated levels of IL-6, IL-8 and LBP and significantly decreased levels of PGE2 and BPI. By the time of delivery, and following ligation of teeth in four quadrants, all animals had a CIPD >20 (not periodontally healthy). Again, the most diseased animals provided a profile of serum analytes that was distinctive from animals expressing primarily gingival inflammation,

with a lower level of destructive disease. These data suggested that the variation in naturally occurring periodontal Galunisertib datasheet inflammation and disease in the female baboons was reflected by patterns of systemic inflammation. Moreover, those animals that responded more robustly to the infection burden accompanying ligation generally

demonstrated a unique profile of mediator levels. As we have observed previously, these findings are consistent with a subset of these non-human primates that show an increased susceptibility to dysregulated local responses eliciting greater disease and allowing a more substantial challenge to the systemic inflammatory apparatus. These outcomes would also suggest that animals with a more effective adaptive immune response to the microbial challenge would demonstrate less disease, as we have reported previously [46,55], and less systemic challenge with lower serum inflammatory responses. Examination of the relationships between the inflammatory mediators and antibody in serum showed that elevated or decreased antibody specificities were coincident buy Alectinib with levels of selected mediators. However, identification of a particular pattern of antibodies that best described the systemic inflammatory response profiles was somewhat complex. Generally, the acute phase reactants were delineated by

unique patterns of antibody responses that were observed at specific time-points during the study. The chemokines IL-8 and MCP-1 demonstrated some similarity in the patterns of antibody correlations, particularly at baseline N-acetylglucosamine-1-phosphate transferase and mid-pregnancy. IL-6 levels were best described by distinctive antibody specificities during the protocol. However, of the 20 antibody specificities that were evaluated, levels of F. nucleatum, P. gingivalis, A. actinomycetemcomitans and C. rectus showed some consistency in contributing to relationships with the range of inflammatory mediators analysed. However, within the model system, a pattern of the serum analytes provided some insight into describing the expression of disease. We observed a clear association of IL-6, IL-8 and LBP levels across disease expression and throughout pregnancy. When broken down further, we observed that these relationships were related primarily to the characteristics of the disease expression in the individual animal, and generally related less to the stage of pregnancy at which the sample was obtained.

This study was supported by Nature Science Foundation of Shandong

This study was supported by Nature Science Foundation of Shandong Province (Grant Number: ZR2010HL038). Science and Technology Development Projects of Jining City (Grant Number: 2012jnjc16). None. “
“Lymphodeleption prior to adoptive transfer of tumor-specific T cells greatly improves the clinical efficacy of adoptive T-cell therapy for patients with advanced melanoma, and increases the therapeutic efficacy of cancer vaccines in animal models. Lymphodepletion reduces competition between lymphocytes, and thus creates 17-AAG price “space” for enhanced expansion and survival of tumor-specific T cells. Within the lymphodepleted host, Ag-specific T cells still need to compete

with other lymphocytes that undergo lymphopenia-driven proliferation. Herein, we describe the relative capacity of naïve T cells, Treg, and NK cells to undergo lymphopenia-driven proliferation. We found that the major population that underwent lymphopenia-driven proliferation was the CD122+ memory-like T-cell population (CD122+CD8+ Treg), and these buy RG-7388 cells competed with Ag-driven proliferation of melanoma-specific T cells. Removal of CD122+CD8+ Treg resulted in a greater expansion of tumor-specific T cells and tumor infiltration of functional effector/memory T cells. Our results demonstrate the lymphopenia-driven proliferation of CD122+CD8+ Treg in reconstituted lymphodepleted

mice limited the antitumor efficacy of DC vaccination in conjunction with adoptive transfer of tumor-specific T cells. Due in large part to the limited expansion and survival of vaccine-induced tumor Ag-specific T cells, active specific immunotherapy of tumor-bearing hosts with tumor vaccines has generally been ineffective

1. Therefore, a major goal of current T-cell based immunotherapy protocols is to induce a large number of tumor-specific T cells capable of mediating regression of established tumors and maintaining long-term memory to prevent tumor recurrence. Lymphodepletion has been recently demonstrated to facilitate the expansion and survival of therapeutic, adoptively SPTLC1 transferred in vitro-expanded T cells, which induced tumor regression in patients with melanoma (see review in 2). Concurrently, we and others have demonstrated that vaccination induced a dramatic expansion of tumor-specific T cells, and improved the efficacy of active immunotherapy in reconstituted lymphodepleted mice 3–7. While lymphopenic conditioning has been shown to benefit antitumor immunity, and aids in the establishment of the T-cell repertoire in neonatal mice 8, it was detrimental for transplant tolerance 9, and precipitated the development of autoimmune disease 10. Homeostatic proliferation, or more precisely, lymphopenia-driven proliferation of lymphocytes in irradiated or lymphocyte-deficient mice, is a well-studied phenomenon (see review 11).

The overall relative risk for the development of proteinuria
<

The overall relative risk for the development of proteinuria

for the three trials was 0.28 (95% CI: 0.15–0.53) with no significant heterogeneity between studies. No study provided information to allow assessment of regression to normoalbuminuria. The overall risk reduction was 4.5% giving a NNT of 22 patients per year to prevent one case of clinical proteinuria. The differences in BP between treatment and placebo were small and as such consider that a 72% drop in clinical proteinuria was unlikely to be caused by such a small difference and more likely that ACEi have a specific renoprotective effect.4 No appropriate trials were identified comparing antihypertensive agents and intensive versus moderate BP control other than the later analysis of the ABCD

Staurosporine ic50 trial. Intensive therapy with either enalapril or nisoldipine resulted in a lower percentage of people who progressed from normoalbuminuria and microalbuminuria to clinical proteinuria with no difference between the ACEi and CCB.73 Only one available placebo controlled study was identified for hypertensive people with type 2 diabetes with microalbuminuria.71 The treatment involved two dose levels of the ARB Roxadustat antagonist irbesartan for 2 years. A combined relative risk for clinical proteinuria for the ARB treatments was 0.50 (95% CI: 0.0.31–0.81). This reduction in the rate of progression to clinical proteinuria was independent of BP. Only the ABCD trial was identified as being relevant for comparing intensive versus moderate BP control in hypertensive people with type 2 diabetes with microalbuminuria.73 Individuals were randomized to either ACEi enalapril or the CCB antagonist nisoldipine. The percentage of people who progressed from Sclareol microalbuminuria to clinical proteinuria was not significantly different between the treatment groups. Newman et al.4 noted that the results supported the observations from the UKPDS of progression to clinical proteinuria among microalbuminuric and normoalbuminuric

people with type 2 diabetes was not affected by the level of BP control, however, separation of the two groups is not possible. Four trials were identified comparing different hypertensive agents in hypertensive people with type 2 diabetes with microalbuminuria.12,74–76 The trials all included an ACEi treatment compared with either a CCB antagonist or b blocker. The overall relative risk of development of clinical proteinuria for ACEi versus other hypertensive therapy was 0.74 (95% CI: 0.44–1.24) with no significant heterogeneity. Thus the ACEi reduced progression to clinical proteinuria as effectively as the other therapies. These findings were considered to be comparable with the UKPDS findings which could not separate normoalbuminuria from microalbuminuria. The two systematic reviews addressed the use of antihypertensive agents in people with diabetes with respect to renal outcomes.16,17 The objectives of the review by Strippoli et al.

In contrast to oestradiol, raloxifene did not have the capacity t

In contrast to oestradiol, raloxifene did not have the capacity to ameliorate the effector phase of arthritis. We also report that the induction of CAIA, by itself, did not induce osteoporosis. Interestingly, both raloxifene and oestradiol prevented LPS-induced trabecular bone loss. Additional experiments are needed to elucidate the mechanisms whereby oestradiol and raloxifene exert their beneficial effects on arthritis and inflammation-triggered osteoporosis. We thank Margareta Rosenkvist, Berit CDK and cancer Eriksson, Anette Hansevi and Maud Petersson for excellent technical assistance. This study was supported by grants from the Medical Faculty of Göteborg University

(ALF), Göteborg Medical Society, King Gustav www.selleckchem.com/products/VX-770.html V’s 80 years’ foundation, the Sahlgrenska Foundation, the NovoNordic Foundation, the Börje Dahlin foundation, the Association against Rheumatism, Reumaforskningsfond Margareta and the Swedish Research Council. The authors declare that they

have no competing interests. “
“Mutations in the signal transducer and activator of transcription 3 (STAT3) were reported to cause hyperimmunoglobulin E syndrome (HIES). The present study investigates T helper type 17 (Th17) responses triggered by the relevant stimuli Staphylococcus aureus and Candidia albicans in five ‘classical’ HIES patients, and a family with three patients who all had a milder HIES phenotype. We demonstrate that patients with various forms of HIES have different defects in their Th17 response to S. aureus and C. albicans, and this is in line with the clinical features of the disease. Interestingly, a partial deficiency of interleukin (IL)-17 production, even when associated with STAT3 mutations, leads to a milder

Unoprostone clinical phenotype. We also observed defective Th17 responses in patients with the ‘classical’ presentation of the disease but without STAT3 mutations. These data demonstrate that defective IL-17 production in response to specific pathogens can differ between patients with HIES and that the extent of the defective Th17 response determines their clinical phenotype. Hyperimmunoglobulin E syndrome (HIES) is a primary immunodeficiency disorder characterized by recurrent staphylococcal skin abscesses, pulmonary infections, mucocutaneous candidiasis, skeletal and dental abnormalities and elevated serum immunoglobulin E (IgE) concentrations [1,2]. Although most cases of HIES are sporadic, familial cases are encountered, mainly with an autosomal dominant mode of inheritance [3]. Recently, mutations in the evolutionarily conserved SH2 and DNA-binding domains of the signal transducer and activator of transcription 3 (STAT 3) were found to be present in approximately 60% of the patients with HIES [4,5].

This is the first report of a genome-wide fine mapping of DNA met

This is the first report of a genome-wide fine mapping of DNA methylation in MZ twins discordant and concordant for SSc. Interestingly, we found that consistent differences between the studied twins affect only genes located on the X chromosome, thus possibly contributing to the aetiology of SSc female predominance. The study of individual susceptibility to autoimmune diseases is hampered by numerous issues which apply well to SSc, including the rare prevalence, AUY-922 molecular weight the long latency between the exposure to specific environmental factors and disease onset and the limited applicability of GWAS data gathered in recent studies [18–25]. These limitations

are well represented by the variable concordance rates in MZ twins for specific autoimmune diseases and suggest that epigenetic changes may constitute the missing link between individual susceptibility and environmental factors. Data on the epigenetics of SSc are limited to the observation that DNA from CD4+ T cell of patients with SSc is hypomethylated significantly compared to healthy controls, along with a reduced expression of enzymes crucial to DNA methylation such as DNMT1, MBD3 and MBD4

[26]. More specifically, the FL1 promoter is down-regulated by CpG methylation in SSc fibroblasts, thus influencing the expression of collagen alpha 1 and other matrix proteins [27]. Conversely, a growing amount of data is being produced by epigenome-wide studies PARP inhibition of peripheral blood cells from MZ twins discordant for autoimmune diseases such as type 1 diabetes [28], multiple sclerosis [29], systemic lupus erythematosus [30] and psoriasis [31]. These studies are performed mainly on effector cell subpopulations (monocytes, T cells) to identify differentially expressed genes possibly preceding disease onset [28]. Investigating

DMRs in peripheral blood mononuclear cells (PBMC) from MZ twins discordant and concordant for SSc to search for aetiological factors and biomarkers for SSc is expected to be a powerful tool in spite of the limited number of samples examined. First, the limited number of samples should not be considered as a limit of this study based on the low prevalence of the disease in the general population, ranging from 71 to 433 cases per million [32], the low rate of MZ twinning (approximately three to four per 1000 pregnancies) [33] ADAMTS5 and the low concordance for SSc in such twins [3]; these factors suggest that our series of twins is representative of a general population of 10 million individuals. Secondly, several studies investigated the expression signature in PBMC from patients affected by complex diseases [34–36], including SSc, with reported correlations with defined subsets of SSc and different organ involvements [37]. Among such identified markers, interferon (IFN)-induced protein 44 seems to be one of the most highly differentially expressed gene in SSc monocytes and CD4+ T cells as well as IL-1α and IL-16 [38].

coli strain TOP10F′ After confirming the

sequence, the c

coli strain TOP10F′. After confirming the

sequence, the cloned DNA was extracted from the plasmid using restriction enzymes (EcoRI and HindIII) and then subcloned into the pBluescript II SK(+) vector (Stratagene, La Jolla, CA, USA) digested with the same enzymes. The expression plasmid for Stx2-His was named pBSK-Stx2(His). The expression plasmid of the attenuated mStx2-His was generated from pBSK-Stx2(His) by changing the glutamic acid at position 167 and the arginine at position 170 of the A subunit into glutamine and leucine, respectively, by site-directed mutagenesis using a QuikChange II Site-directed Mutagenesis Kit (Stratagene) and two primer sets: Stx2A(E167Q)-f and Stx2A(E167Q)-r; and Stx2A(E167Q + R170L)-f and Stx2A(E167Q + R170L)-r. All primer sequences used in this study are listed in Table 1 and the plasmid map for pBSK-Stx2(His) is shown in Figure 1. The pBSK-Stx2(His) plasmid was transformed Dasatinib cell line into E. coli strain MV1184 (ara, Δ(lac-proAB), rpsL, thi (φ80lacZΔM15), Δ(srl-recA)306::Tn10 (tetr)/F′[traD36, proAB+, lacIq, lacZΔM15]). Each transformant was cultured in Luria–Bertani broth containing 50 μg/mL (final concentration) ampicillin overnight at 37°C. Next, 3 mL of culture was inoculated Staurosporine price into 1 L of CAYE broth (2% casamino acids, 0.6% yeast extract, 0.25% NaCl, 0.871% K2HPO4 and 0.25% glucose) containing a 0.1% (v/v)

trace salt solution (5% MgSO4, 0.5% MnCl2 and 0.5% FeCl3), 50 μg/mL of ampicillin, and 90 μg/mL of lincomycin (Pfizer, New York, NY, USA) and cultured for 48 hr at 30°C. The cells were collected by centrifugation (7600 g, 20 min) and sonicated in PBS (pH 7.4). After centrifugation (15,000 g, 90 min), the supernatant was applied to a 2 mL column of TALON metal affinity resin (Clontech, Mountain View, CA, USA) equilibrated with PBS, and then acetylcholine bound Stx2-His (or mStx2-His) was eluted by PBS containing 0.15 M imidazole. To remove the contaminated products of crude Stx2-His preparation, hydroxyapatite (Bio-Rad, Hercules, CA, USA) chromatography was conducted. Prior to chromatography, each crude preparation was dialyzed against 10 mM sodium phosphate buffer (pH 7.0) containing 1 M NaCl to avoid

aggregation and then applied onto a hydroxyapatite column equilibrated with the same buffer. After collecting the unabsorbed fractions, the bound proteins were eluted with 0.4 M sodium phosphate buffer (pH 7.0). Unabsorbed Stx2-His was concentrated by applying it onto fresh TALON affinity resin and the final products were dialyzed in PBS. Throughout the purification process, insoluble proteins which were yielded during the dialyzing steps and storage period at −30°C were removed by centrifugation (15,000 g, 30 min). Protein concentrations were determined with DC protein assay reagent (Bio-Rad) using BSA as a standard. The toxicity of each Stx2-His and EHEC-derived Stx2 (Nacalai Tesque, Kyoto, Japan) were evaluated in vitro and in vivo.

There are numerous pro- and anti-inflammatory factors involved in

There are numerous pro- and anti-inflammatory factors involved in the pathophysiology of human atherosclerosis. LDL apheresis affects many of these factors including the complement cascade, the cytokine network and several other inflammatory mediators. Several studies demonstrate an apparently beneficiary profile regarding these factors during LDL apheresis, most likely due to adsorption of the mediators to the columns. This could potentially be of benefit for these patients with respect to progression Metformin mouse of arteriosclerosis,

in addition to lowering their LDL cholesterol. However, most of the studies cited are small, have utilized different kinds of apheresis columns, have studied different patients groups and, most importantly, have a limited and partly diverse panel of mediators included. Although a net effect in certain apheresis systems might be anti-inflammatory, as evaluated by plasma measurements, a main goal for future improvement of apheresis columns will be to make them as biocompatible as possible, that is, being inert with respect to complement, cytokines and the remaining inflammatory network. There are definitely

more mediators generated by the artificial surface than we are measuring and, thus, proinflammatory mediators may contribute more than apparent from current studies. Therefore, to get more insight into the effects on inflammation induced by LDL apheresis, check details larger studies should be performed, preferably comparing the effect of different LDL apheresis columns on the total inflammatory profile, by

including a broad spectrum of biomarkers. Furthermore, changes in pro- and anti-inflammatory biomarkers should ideally be correlated to clinical endpoints. Considering the fact that each centre performing LDL apheresis has D-malate dehydrogenase a relatively limited number of patients, multicentre trials would be required. Although the total number of patients available for clinical studies probably would preclude the use of hard endpoints like death or myocardial infarction, surrogate endpoints like carotid intimae media thickness or coronary calcium score evaluated by computerized tomography would undoubtedly add valuable information about the relationship between inflammatory biomarkers and the process of atherosclerosis. “
“Sepsis is characterized by a severe systemic inflammatory response to infection that is associated with high morbidity and mortality despite optimal care. Invariant natural killer T (iNK T) cells are potent regulatory lymphocytes that can produce pro- and/or anti-inflammatory cytokines, thus shaping the course and nature of immune responses; however, little is known about their role in sepsis. We demonstrate here that patients with sepsis/severe sepsis have significantly elevated proportions of iNK T cells in their peripheral blood (as a percentage of their circulating T cells) compared to non-septic patients.

The longer the animal survived, the more

The longer the animal survived, the more Estrogen antagonist biofilm can be found within the ETT internal surface. Furthermore, during ineffective antimicrobial therapy, the severity of infection increases, more mucus is produced and, consequently, more biofilm accumulates within the tube. Indeed, in the control group, animals survived less in comparison with animals treated with linezolid (Table 1). However, in the latter group, linezolid achieved better rate of bacterial killing limiting bacterial biofilm development. In contrast, as a result

of the worse penetrability of vancomycin vs. linezolid into the respiratory secretions, pulmonary tissue, or biofilm (Cruciani et al., 1996; Jefferson et al., 2005), higher clumps of bacterial biofilm were found within the vancomycin group (Table 2). Vancomycin group had also the highest mean of total area analyzed as images depended on the amount of information available in each sample (Table 2). Furthermore, sublethal doses of vancomycin have recently been associated with increased biofilm production by Staphylococcus aureus, because of autolysis and eDNA release (Fig. 4; Hsu et al., 2011). Previous results of this animal model are consistent with our CLSM findings and confirm greater antimicrobial Barasertib price efficacy of linezolid likely due to its pharmacokinetic/pharmacodynamic (PK/PD) profile (Martinez-Olondris

et al., 2012). As clearly emphasized by experts on this field, in vivo biofilm models are necessary to better understand the implications of biofilms in human infections (Hall-Stoodley & Stoodley, 2009). As described by our findings, the use of CLSM in vivo provides essential information on the three-dimensional biofilm structure within the ETT internal lumen and potentially the intensity of the immune response. Of note, we observed biofilm clusters adherent and detached to the ETT surface (Figs 3-7). Other authors have previously described non-adherent bacterial aggregates (Lam et al., 1980; Singh et al., 2000; Worlitzsch et al.,

2002; Fux et al., 2004). Indeed, several studies Montelukast Sodium clearly described biofilm growing inside mucus in patients with cystic fibrosis (Yang et al., 2008; Hassett et al., 2010). Furthermore, the presence of mucus could enhance production of biofilm not necessarily attached to ETT surface (Landry et al., 2006). Thus, although further corroboration is needed, our findings imply greater risks for bacterial translocation into the airways. Additionally, considering that biofilm could develop associated with but not directly adherent to the ETT surface, the efficacy of ETT coated with antimicrobial agents could be reduced. A few potential limitations of this study deserve further clarification. First, although we analyzed a considerable number of images, we only analyzed a small number of ETT samples. Yet, results obtained are consistent with previous findings on this animal model.

Venkataraman et al 20 demonstrated that anti-HIV activity in CVL

Venkataraman et al.20 demonstrated that anti-HIV activity in CVL can be attributed to multiple cationic peptides, as the removal of cationic components abrogates this activity. Singh et al. and Chen et al.58,59 reported that in lungs and skin, some cationic peptides act synergistically, whereas others cancel each other out and still others have find more no effect on each other. Further studies in the FRT are required to determine the contributions of individual molecules towards

overall anti-HIV activity. As mucosal antimicrobials interact in a very complex manner, it is unlikely that deletion of single molecules would affect the overall antimicrobial activity of the secretions.41,60 What remains to be determined is why, in spite of the presence of Trappin-2/Elafin and other endogenous antiviral molecules, women become infected with HIV. As discussed elsewhere, we have reviewed the literature and concluded that multiple immunological parameters in the upper and lower FRT are suppressed at midcycle, between the time of ovulation and implantation, to optimize the conditions for fertilization and

implantation.28 As a result, we postulate that this website for a 7-day time-period beginning with ovulation, there exists a window of vulnerability when a woman might be more likely to be infected by HIV.28 With specific reference to the innate immune Fossariinae system, we and others have reported that antiviral molecules, including SLPI, defensins, etc., are lowest at this time relative to early

proliferative and late secretory stages of the menstrual cycle.28 It remains to be determined whether nadir levels are below the threshold of immune protection as a result of the direct effects of sex hormones on immune cell synthesis and secretion. Beyond the absolute level of these molecules in CVL, the biological activity of each must also be considered. For example, others have recently reported that kallikreins, a family of serine proteases known for their influence on the development of innate antimicrobial peptide function, are present in FRT secretions.61 As kallikreins vary with stage of the menstrual cycle,62,63 these findings suggest that conversion of inactive molecules to biologically active ones may be as important as the levels of antimicrobials present in FRT secretions. Another processing molecule is the serine protease CD26, which is important for activating chemokines such as stromal derived growth factor-1 (SDF-1) and MIP1β that block the cell-surface receptors required for HIV entry.64,65 Our finding of Trappin-2/Elafin and other antimicrobials being produced and secreted into the lumen by upper FRT cells provides an explanation for what has been a paradoxical observation. It is well established that bacteria reach the upper FRT within minutes of vaginal deposition.

This is in line with our previous findings where HHV-6 activated

This is in line with our previous findings where HHV-6 activated pDC block Th2 cytokine synthesis in responding cord T cells [3]. This fits well with our and others Palbociclib observations,

showing that childhood infection with HHV-6 or EBV is inversely related to allergic sensitization and/or allergic symptoms [3, 5, 6]. Furthermore, the hygiene hypothesis postulates that the increase in allergic diseases during the last decades is caused by a decreased infectious burden [2], which in turn is owing to vaccination, antibiotics, improved hygiene and generally enhanced socioeconomic standard [1]. Given that many childhood viral diseases have a reduced incidence [1, 60–62], it is tempting to speculate that the large increase in allergic diseases

could be related to a decreased exposure to viral infections. Taken into account that our studies were performed in vitro using inactivated microbes, we suggest that viral infections during infancy may play an important role in the development of the immune system, by driving the adaptive immunity away from Th2 biased immune responses, and thus, to prohibit the development of allergic diseases. These studies were supported by the Swedish Lorlatinib mw Science Council, Cancer and Allergifonden, Torsten and Ragnar Söderbergs stiftelser, Västra Götalandsregionen through LUA/ALF, and Inga-Lill and Arne Lundbergs forskningsfond. “
“MHC class I molecules bind intracellular oligopeptides and present them on the cell surface for CD8+ T-cell activation and recognition. Strong peptide/MHC class I (pMHC) interactions typically induce the best CD8+ T-cell responses;

however, many immunotherapeutic tumor-specific peptides bind MHC with low affinity. To overcome this, immunologists can carefully alter peptides for enhanced MHC affinity but often at the cost of decreased T-cell recognition. A new report published in this issue of the European Journal of Immunology [Eur. J. Immunol. 2013. 43:3051–3060] shows that the substitution of proline at the third residue (p3P) of a common tumor peptide increases pMHC affinity and complex stability while enhancing T-cell receptor recognition. X-ray crystallography indicates that stability is generated through newly introduced CH-π bonding between p3P Tolmetin and a conserved residue (Y159) in the MHC heavy chain. This finding highlights a previously unappreciated role for CH-π bonding in MHC peptide binding, and importantly, arms immunologists with a novel and possibly general approach for increasing pMHC stability without compromising T-cell recognition. MHC class I (MHC I) molecules are constitutively expressed on the surface of nearly all nucleated cells in jawed vertebrates. MHC I molecules are noncovalently associated trimers consisting of a polymorphic heavy chain, β2m, and an oligopeptide.