jejuni and on

jejuni and on Entinostat the transcription of virulence-associated genes (htrA, ciaB, dnaJ) that are known to play important roles in the stress response of C. jejuni, its interactions with eukaryotic cells and the colonization of chickens [11, 35, 38, 39]; and 2) to investigate the effect of these stresses on the uptake of C. jejuni by A. castellanii and on its intracellular survival. The underlying hypothesis was that pre-exposure to stress may prime C. jejuni for resistance to further environmental pressure such as phagocytosis by amoeba and intracellular killing, and this priming could be monitored via the levels of transcription of the chosen virulence-associated genes. Results Effect of environmental

stresses on the survival of C. jejuni As shown in Figure  1, exposure to low nutrient, heat and osmotic stresses strongly decreased the survival of C. jejuni in pure planktonic cultures (no amoeba) as GSK1904529A order assessed by colony forming unit (CFU) counting. While in the conditions tested, 7.9 log10 CFU/ml were measured in the absence of stress, only 6.1, 5.7 and 5.6 log10 CFU/ml were measured after low nutrient, heat or osmotic stress, respectively, which amounted to ~ 60, 105 and 144 fold reductions in the CFU numbers. The results were statistically significant, with p values

less than 0.05 as per t-test. Heat and osmotic stresses reduced the survival of C. jejuni the most. In contrast, exposure of C. jejuni to hydrogen peroxide (oxidative

stress) for 15 min only triggered a 2 fold (not statistically Lazertinib clinical trial significant) decrease of survival of C. jejuni since 7.4 log10 CFU/ml were recovered. Figure 1 Survival of C. jejuni cells exposed to environmental stresses in pure planktonic MycoClean Mycoplasma Removal Kit culture in the absence of any amoeba. Survival was determined by counting colony forming units (CFU). Data are means and standard errors of three independent experiments. The treatment was statistically compared with the no stress control. (*), p < 0.05. Transcription of virulence genes in C. jejuni under environmental stresses Three virulence-related genes, htrA, dnaJ and ciaB, were chosen as reporters to monitor transcriptional regulation that occurred after exposure of C. jejuni to various stresses. First, quantitative real-time RT-PCR analyses were performed to check the basal level of transcription of each of the selected gene when the bacteria were grown in vitro in optimal conditions of osmolarity and nutrient availability (in Trypic soy agar with 5% sheep blood) and of temperature (37°C) and oxygen concentration (5%) [27]. All three genes were transcribed constitutively at high levels, with respective levels of transcription of htrA, dnaJ, and ciaB only 7.6, 12.5, and 7.5 fold lower than the very highly transcribed 16S rRNA internal control (data not shown). Secondly, the impact of stress on the levels of expression of these genes was tested.

Comments are closed.