However, concurrent

observations on the nonsynonymous SNP

However, concurrent

observations on the nonsynonymous SNPs of mce operon proteins reported by both PolyPhen and PMut substantiate our hypothesis further. Energy minimization studies Selleck PD0332991 on the structure of Mce1A protein show that Pro359Ser mutation resulted in the loss of α-helical structure in the mutated protein. Analysis of wild and mutated Mce1A protein structures by HB plot indicates that change in hydrogen bonding interaction pattern in the mutant protein lead to conformational changes. Mutation of proline to serine residue in proteins are known to cause structural alterations by the reduction of α-helix content of protein and decreases protein stability and increase its susceptibility to proteolysis by trypsin [25]. Yazyu et al. [26] observed that Pro122Ser mutation could bring about the alteration in the pH of the system by changing the cation specificity of melibose carrier (a membrane bound protein Tariquidar in vitro which mediates co transport of α-galactosides with monovalent cations) in E. coli. Pro122Ser mutant lost the ability to utilize H+ and made the carrier favorable for Li+- melibose co-transport. Serine being a hard Lewis base interacts

with hard Lewis acids such as Li+ instead of H+ [26]. Mce1A protein is a cell surface protein [27] so it may be speculated that the aforementioned changes due to Pro359Ser mutation may have a diminishing effect Isotretinoin on the stability of protein and thus on the biological function of it. In a further analysis, we compared the SNPs in the genes of mce1 and mce4 operons in 59 drug resistant (DR) and 22 drug sensitive (DS) clinical isolates. The comparison of SNPs in the mce genes in DR and DS clinical isolates revealed that both mce1 and mce4 operon genes of DS clinical isolates were more polymorphic than DR clinical isolates. It is possible that while drug resistance provides extra edge to DR isolates, the DS isolates try to enhance their virulence mechanisms

and adaptability to hostile intracellular environment by undergoing mutations in them. This is also supported by a report by Shimono et al. [28] where they have demonstrated that, unlike wild type M. tuberculosis, a strain of M. tuberculosis with disrupted mce1 operon become hypervirulent. Further study of larger number of single and multi drug resistant isolates may give a conclusive answer to the significance of such an observation. Taken together the SNP analysis and in silico modeling reported here predict that the SNPs in the mce1 and mce4 operons in the clinical isolates are reasonably frequent. Also, the in silico modeling of nonsynonymous SNP in the mce1A gene of mce1 operon indicates that such change may translate into altered function of the gene that may reflect on the virulence and biology of the pathogen.

Comments are closed.