coli and triangles indicate Rv1096 protein over-expressed in M s

coli and triangles indicate Rv1096 protein over-expressed in M. smegmatis. Values

are means ± SD. B) Time course and concentration curve for Rv1096. Purified Rv1096 protein at 1.22, 2.88 or 3.65 μg/ml was incubated with M. smegmatis PG (1 mg/ml) substrate at 37°C for 5, 10, 15, 30 and 50 min. Plotted values are means ± SD. C) Km and Vmax values for Rv1096 PG deacetylase activity. Kinetic parameters were calculated by a double reciprocal plot. D) Rv1096 protein exhibited a metallo dependent enzymatic activity. Various divalent cations (Mg2+, Mn2+, Co2+, Ca2+or Zn2+) were added to a final concentration of 0.5 μM. Values are mean ± SD. According to the time versus concentration curve (Figure 3B), when the Rv1096 protein concentration was 2.88 μg/ml, acetic acid was released at a constant

rate over MK-8931 mouse a 30 min period. Therefore, the initial velocity range fell within 30 min, and the optimal concentration for Rv1096 was 2.88 μg/ml. The optimal deacetylation reaction conditions were determined by changing the pH and temperature of the reaction. From this, the optimal pH was found to be 7.0 and the optimal temperature 37°C (data not shown). The kinetic parameters were calculated by a double reciprocal plot (Figure 3C): Km = 0.910 ± 0.007 mM; Vmax = 0.514 ± 0.038 μM min-1; and Kcat = 0.099 ± 0.007 (S-1). As shown in Figure 1, Rv1096 contained the same Asp-His-His conserved residues known to interact with Co2+ in S. pneumoniae PgdA. To ensure that Rv1096 was also a metallo-dependent deacetylase, various divalent cations (Mg2+, Mn2+, Co2+, Ca2+ or Zn2+) were added to the reaction buffer, each {Selleck Anti-infection Compound Library|Selleck Antiinfection Compound Library|Selleck Anti-infection Compound Library|Selleck Antiinfection Compound Library|Selleckchem Anti-infection Compound Library|Selleckchem Antiinfection Compound Library|Selleckchem Anti-infection Compound Library|Selleckchem Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|buy Anti-infection Compound Library|Anti-infection Compound Library ic50|Anti-infection Compound Library price|Anti-infection Compound Library cost|Anti-infection Compound Library solubility dmso|Anti-infection Compound Library purchase|Anti-infection Compound Library manufacturer|Anti-infection Compound Library research buy|Anti-infection Compound Library order|Anti-infection Compound Library mouse|Anti-infection Compound Library chemical structure|Anti-infection Compound Library mw|Anti-infection Compound Library molecular weight|Anti-infection Compound Library datasheet|Anti-infection Compound Library supplier|Anti-infection Compound Library in vitro|Anti-infection Compound Library cell line|Anti-infection Compound Library concentration|Anti-infection Compound Library nmr|Anti-infection Compound Library in vivo|Anti-infection Compound Library clinical trial|Anti-infection Compound Library cell assay|Anti-infection Compound Library screening|Anti-infection Compound Library high throughput|buy Antiinfection Compound Library|Antiinfection Compound Library ic50|Antiinfection Compound Library price|Antiinfection Compound Library cost|Antiinfection Compound Library solubility dmso|Antiinfection Compound Library purchase|Antiinfection Compound Library manufacturer|Antiinfection Compound Library research buy|Antiinfection Compound Library order|Antiinfection Compound Library chemical structure|Antiinfection Compound Library datasheet|Antiinfection Compound Library supplier|Antiinfection Compound Library in vitro|Antiinfection Compound Library cell line|Antiinfection Compound Library concentration|Antiinfection Compound Library clinical trial|Antiinfection Compound Library cell assay|Antiinfection Compound Library screening|Antiinfection Compound Library high throughput|Anti-infection Compound high throughput screening| at a final concentration of 0.5 μM; EDTA at 50 μM served as a control. The results showed that the enzymatic reactivity reached the highest level in the presence of Co2+; however, enzymatic activity was lost in the presence of EDTA (Figure 3D). Therefore, we determined that ifoxetine Rv1096 is a metallo-dependent PG deacetylase. M. smegmatis/Rv1096exhibits lysozyme Temsirolimus chemical structure resistance To determine the contribution of Rv10196 protein to M. smegmatis resistance to lysozyme, M. smegmatis/Rv1096 and wild-type M. smegmatis cultures were divided

into two parts at the beginning of the exponential growth phase. Test samples received 200 μg/ml lysozyme, unlike the control samples. As shown in Figure 4A, the wild-type M. smegmatis culture suspension treated with lysozyme lost its opaque, hazy appearance, becoming transparent at the end of the exponential growth phase, or shortly after reaching stationery phase. Its OD600 and CFU values decreased, indicating that cell lysis took place in the wild-type lysozyme-treated M. smegmatis. The M. smegmatis/Rv1096 growth curves for lysozyme treatment showed almost no difference to the lysozyme-untreated group, suggesting that Rv10196 protein contributed to M. smegmatis resistance to lysozyme degradation. There was also no significant difference between the M. smegmatis/Rv1096 and wild-type M.

Comments are closed.