2012005) Electronic supplementary material Additional file 1: Fi

2012005). Electronic supplementary material Additional file 1: Figure S1: (a) Adsorption kinetics fits with the pseudo-first-order model (red line) and (b) adsorption isotherm fits with the Langmuir isotherm model (red line). (DOC 690 KB) References 1. Kelly C, Rudd

JW, Holoka M: Effect of pH on mercury uptake by an aquatic bacterium: implications for Hg cycling. Environ Sci Technol 2003, 37:2941–2946.CrossRef 2. World Health Organization: IPCS Environmental Health Criteria 101: Methylmercury. International Programme of Chemical Safety. Geneva: World Health Organization; 1990. 3. Vieira FSE, de Simoni JA, Airoldi C: Interaction of cations with SH-modified silica gel: thermochemical study through calorimetric titration and direct extent of reaction determination. J Mater Chem 1997, 7:2249–2252.CrossRef

Vorinostat price 4. Feng X, Fryxell G, Wang L-Q, Kim AY, Liu J, Kemner K: Functionalized monolayers on ordered mesoporous supports. Science 1997, Selleck Small molecule library 276:923–926.CrossRef 5. Bibby A, Mercier L: Mercury (II) ion adsorption behavior in thiol-functionalized mesoporous silica microspheres. Chem Mater 2002, 14:1591–1597.CrossRef 6. Yavuz CT, Mayo J, TNF-alpha inhibitor William WY, Prakash A, Falkner JC, Yean S, Cong L, Shipley HJ, Kan A, Tomson M: Low-field magnetic separation of monodisperse Fe 3 O 4 nanocrystals. Science 2006, 314:964–967.CrossRef 7. Kinniburgh D, Jackson M: Adsorption of mercury (II) by iron hydrous oxide gel. Soil Science Society of America Journal 1978, 42:45–47.CrossRef 8. Tiffreau C, Lützenkirchen J, Behra P: Modeling the adsorption of mercury (II) on (hydr) oxides I. Amorphous iron oxide and α-quartz. J Colloid Interface Sci 1995, 172:82–93.CrossRef 9. Kim CS, Rytuba JJ, Brown GE Jr: EXAFS study of mercury (II) sorption to Fe-and Al-(hydr)

oxides: I Effects of pH. J Colloid Interface Sci 2004, 271:1–15.CrossRef 10. Chandra V, Park J, Chun Y, Lee JW, Hwang I-C, Kim KS: Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano 2010, 4:3979–3986.CrossRef 11. He H, Klinowski J, Forster M, Lerf A: A new structural model for graphite oxide. Chemical Physics Letters 1998, 287:53–56.CrossRef 12. Hontoria-Lucas C, Lopez-Peinado A, López-González JD, Rojas-Cervantes M, Martin-Aranda R: Study of oxygen-containing groups in a series of graphite oxides: physical and chemical characterization. NADPH-cytochrome-c2 reductase Carbon 1995, 33:1585–1592.CrossRef 13. Dreyer DR, Park S, Bielawski CW, Ruoff RS: The chemistry of graphene oxide. Chem Soc Rev 2010, 39:228–240.CrossRef 14. Wang H, Robinson JT, Diankov G, Dai H: Nanocrystal growth on graphene with various degrees of oxidation. J Am Chem Soc 2010, 132:3270–3271.CrossRef 15. Wang X, Tabakman SM, Dai H: Atomic layer deposition of metal oxides on pristine and functionalized graphene. J Am Chem Soc 2008, 130:8152–8153.CrossRef 16. Moon IK, Lee J, Ruoff RS, Lee H: Reduced graphene oxide by chemical graphitization. Nat Commun 2010, 1:73.CrossRef 17. Hummers WS Jr, Offeman RE: Preparation of graphitic oxide.

Comments are closed.